# install.packages("TTR") # install.packages("forecast") library("TTR") library("forecast") library(quantmod) ############################################################################# # Here is a funciton to compare manual vs. auto.arima estimation # It also perform out sample forecast # The data is divided by train set and test set #----------------------------------------------------------------------# test_arima <- function(n,arma,h){ par(mfrow = c(2, 2)) ts.plot(y, main = "ARMA Process ", col = "red") acf(y) pacf(y) # ARIMA Estimation p1 <- arima(y, order = c(1, 0, 0)) summary(p1) plot(forecast(p1, h = h), include = 2*h) # Residual CHeck par(mfrow = c(2, 2)) plot.ts(p1$residuals) Box.test(p1$residuals, lag = 20, type = "Ljung-Box") jarque.bera.test(p1$residuals) acf(p1$residuals) pacf(p1$residuals) # Train and Check out of sample forecast par(mfrow = c(1, 1)) ts.plot(y, y.train, y.test, col = c("black", "blue", "red")) par(mfrow = c(2, 1)) p1 <- arima(y.train, order = arma) p2 <- auto.arima(y.train, ic = "bic", trace = TRUE) summary(p1) summary(p2) p1.forc = forecast(p1, h = h) p2.forc = forecast(p2, h = h) plot(p1.forc) plot(p2.forc) accuracy(p1.forc, y.test) accuracy(p2.forc, y.test) plotarimapred(y.test, p1, xlim = c(n-3*h,n)) plotarimapred(y.test, p2, xlim = c(n-3*h,n)) } ########################################################################## title="3-Month Treasury Bill: Secondary Market Rate (TB3MS)" getSymbols("TB3MS", src = "FRED") startyear = 1934 endyear = 2017 yraw <- ts(TB3MS,start=c(1934,1),end=c(2007,12),frequency = 12) plot.ts(yraw) adf.test(yraw) y <- diff(ts(yraw, start=1, frequency=1)) n <- nrow(y) h <- 36 arma <- c(1, 0, 1) # Find your ARMA terms based on the ACF and PACF y.train <- window(y, frequency = 1, start = 1 , end=n-h ) y.test <- window(y, frequency = 1, start = n-h+1, end=n ) test_arima(n,arma,h) # ARFIMA fit1 <- arfima(y, order = c(0, 0, 1), cpus = 2, back=T) fit1 AIC(fit1)